МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА» РУТ (МИИТ)

ИНСТИТУТ УПРАВЛЕНИЯ И ЦИФРОВЫХ ТЕХНОЛОГИЙ

УТВЕРЖДАЮ Директор Института управления и цифровых технологий РУТ (МИИТ)

Максимова Е.С.

СОДЕРЖАНИЕ БАЗОВОГО КУРСА

К ДОПОЛНИТЕЛЬНОЙ ПРОФЕССИОНАЛЬНОЙ ПРОГРАММЕ –
ПРОГРАММЕ ПРОФЕССИОНАЛЬНОЙ ПЕРЕПОДГОТОВКИ

«Искусственный интеллект для цифровой трансформации транспорта», реализуемой в рамках проекта «Цифровая кафедра»

Содержание

1.	Общие сведения	3
2.	Содержание базового курса	3
3.	Информационное обеспечение	3
4.	Критерии оценки	4
5.	Примеры тестовых заданий	4

1. Общие сведения

Таблица 1 – Общие сведения

тистици г сещие съедения				
Продолжительность	10 ак.ч.			
курса (включая				
контрольные				
мероприятия)				
Отраслевая	Транспортная отрасль			
направленность				
Критерий успешности	6 баллов по результатам тестирования			
завершения базового				
курса и прохождения				
тестирования				

2. Содержание базового курса

Таблица 2 – Содержание базового курса

№ темы	Наименование темы	Продолжительность (ак.ч.)
1.	Эволюция алгоритмов. Архитектура невидимого мира	1
2.	Эволюция алгоритмов. Алгоритм и виды алгоритмов	1
3.	Эволюция алгоритмов. Алгоритмизация	2
4.	Эволюция алгоритмов. Как алгоритмы становятся частью ИТ-продукта? Основные этапы разработки ИТ-продукта	1
5.	Эволюция алгоритмов. Эпоха машинного обучения	1
6.	Эволюция алгоритмов. Эпоха нейронных сетей	1
7.	Эволюция алгоритмов. Эпоха генеративного ИИ	1
	Итого	8

3. Информационное обеспечение

Таблица 3 – Информационное обеспечение

тионици за тиформиционное обеспетение						
№	Список используемых источников					
темы						
1.	Эриксон, Д. Алгоритмы: руководство / Д. Эриксон; перевод с английского А. В.Снастина, П. Б. Иванова. — Москва: ДМК Пресс, 2023. — 526 с. — ISBN 978-5-97060-981-1. — Текст: электронный // Лань: электронно-библиотечная					
	система. — URL: https://e.lanbook.com/book/348125 Баланов, А. Н. Искусственный интеллект. Понимание, применение и перспективы: учебник для вузов / А. Н. Баланов. — 2-е изд., стер. — Санкт-					
2.	Петербург: Лань, 2025. — 312 с. — ISBN 978-5-507-52357-3. — Текст: электронный // Лань: электронно-библиотечная система. — URL: https://e.lanbook.com/book/448697					

4. Критерии оценки

Время на прохождение тестирования: 90 минут.

Количество попыток: 10.

Количество тестовых заданий: 10 тестовых заданий.

Критерий оценки: правильный ответ.

Шкала оценки (для каждого тестового задания): 1 балл — за правильный ответ, 0 баллов — за неверный ответ.

Минимальный проходной балл: 6 (60% верных ответов в пределах 1 попытки).

5. Примеры тестовых заданий

Тема 1. Эволюция алгоритмов. Архитектура невидимого мира

Задание 1.1. Какая из перечисленных компонент НЕ является ключевой частью экспертной системы?

- А) База знаний, содержащая факты и правила.
- В) Машина вывода, оперирующая правилами для получения заключения.
- С) Система машинного обучения для адаптации к новому опыту.
- D) Интерфейс пользователя для взаимодействия и сбора фактов.

Задание 1.2. Почему в критически важных системах, таких как управление воздушным движением, предпочтение отдается детерминированным алгоритмам, а не более сложным подходам?

- А) Потому что они используют эвристики и интуицию опытных диспетчеров для принятия гибких решений.
- В) Потому что их надежность и предсказуемость можно математически доказать, гарантируя, что система не войдет в опасное состояние.
- С) Потому что они способны самостоятельно адаптироваться к новому опыту и непредвиденным ситуациям в небе.
- D) Потому что они требуют меньше вычислительных ресурсов и работают значительно быстрее, чем любая система на основе ИИ.

Задание 1.3. Какую фундаментальную проблему систем, основанных на правилах (включая экспертные системы), иллюстрирует пример извержения вулкана Эйяфьядлайёкюдль?

- А) Недостаточную скорость обработки данных: из-за большого объема информации о пепле система не смогла вовремя рассчитать новые маршруты.
- В) Сложность в оцифровке мудрости экспертов: невозможно создать исчерпывающее правило для каждого типа вулканического извержения.
- С) "Хрупкость": их абсолютную беспомощность и непредсказуемость в ситуациях, которые не были заранее предусмотрены создателями.
- D) Зависимость от аппаратного обеспечения: релейные системы управления оказались уязвимы к воздействию вулканического пепла.

Тема 2. Эволюция алгоритмов. Алгоритм и виды алгоритмов

Задание 2.1. Какая алгоритмическая конструкция является основной для программы проверки возраста для посещения кино и почему?

- А) Линейный алгоритм, потому что программа выполняет действия строго последовательно: сначала запрашивает возраст, а потом выводит сообщение.
- В) Циклический алгоритм, так как программа повторяет проверку возраста до тех пор, пока не будет введено корректное значение.
- С) Вложенная конструкция, поскольку проверка условия возраста является более простым действием внутри основной программы.
- D) Условная конструкция, потому что выполнение дальнейших действий (вывод сообщения «Доступ разрешен» или «Доступ запрещен») напрямую зависит от выполнения заданного условия (возраст >= 16).

Задание 2.2. Какой из перечисленных способов представления алгоритмов является графическим и наиболее наглядным для понимания последовательности действий?

- А) Словесный
- В) Псевдокод
- С) Блок-схема
- D) Формальный

Задание 2.3. Представьте себе алгоритм для составления расписания поездов на неделю: необходимо для каждого из 7 дней недели перебрать каждый из 24 часов в сутках, чтобы назначить маршруты. Какой тип алгоритмической конструкции из наиболее точно описывает структуру этой задачи?

- А) Циклический алгоритм, так как задача включает повторение действий для дней и часов.
- В) Условная конструкция, потому что для каждого часа должно выполняться условие о наличии свободного пути.
- С) Вложенные алгоритмические конструкции, поскольку один цикл (перебор часов) полностью выполняется внутри каждой итерации другого цикла (перебора дней).
- D) Линейный алгоритм, так как дни недели и часы в сутках идут в строгой, неизменной последовательности.

Тема 3. Эволюция алгоритмов. Алгоритмизация

Задание 3.1. Какое из перечисленных свойств алгоритма означает, что он должен быть применим к целому классу задач, отличающихся только исходными данными?

- А) Дискретность
- В) Определенность
- С) Массовость
- D) Конечность

Задание 3.2. В какой ситуации бинарный поиск НЕЛЬЗЯ применить, и придется использовать линейный поиск?

- А) Когда искомый элемент находится в самом начале массива.
- В) Когда массив содержит очень большое количество элементов.
- С) Когда массив элементов не отсортирован.
- D) Когда требуется найти не только сам элемент, но и его индекс.

Задание 3.3. Используя правила нотации «О»-большое, описанные в лекции, упростите следующее выражение сложности: $O(500 * n + n^2 + n * \log n)$?

- A) O(n)
- B) O(n^2)
- C) O(n * log n)
- D) $O(n^2 + n * log n)$

Тема 4. Эволюция алгоритмов. Как алгоритмы становятся частью ИТ- продукта? Основные этапы разработки ИТ-продукта.

Задание 4.1. Представьте, что на основе идеи «умного шлагбаума» решено создать полноценный ИТ-продукт. Какой этап разработки является первым и самым важным для превращения абстрактного алгоритма в конкретную задачу для программистов?

- А) Написание программного кода, так как это основная часть реализации алгоритма.
- В) Тестирование прототипа, чтобы сразу проверить работоспособность идеи на практике.
- С) Разработка технического задания (ТЗ), потому что именно этот документ формализует бизнес-требования, описывает функции и ограничения системы, служа «инженерным чертежом» для разработчиков.
- D) Выбор аппаратного обеспечения (камер и привода шлагбаума), так как от него зависят все остальные параметры системы.

Задание 4.2. Сравните два проекта - систему автоблокировки на ж/д (основанную на жестких правилах) и систему предиктивного обслуживания локомотивов (основанную на машинном обучении). Какое ключевое отличие будет в их жизненном цикле как ИТ-продуктов?

- А) Система автоблокировки не требует обновлений, в отличие от системы предиктивного обслуживания.
- В) Для системы предиктивного обслуживания не нужно писать код, так как она обучается сама.

- С) Система автоблокировки требует тщательного тестирования, а система машинного обучения нет.
- D) Жизненный цикл продукта на машинном обучении включает непрерывный процесс сбора новых данных, переобучения и валидации модели для поддержания ее точности, что не является обязательным для системы, основанной на статичных правилах.

Задание 4.3. Разработан алгоритм для оптимального распределения грузовых вагонов по сортировочным путям. Что из перечисленного превращает этот отдельный алгоритм в полноценный ИТ-продукт, интегрированный в работу станции?

- А) Успешная презентация концепции алгоритма руководству станции.
- В) Создание комплексной системы, включающей интерфейс для диспетчера, интеграцию с датчиками на путях и считывателями номеров вагонов, базу данных расписаний и систему отчетности.
- С) Написание программного кода, который в точности реализует логику разработанного алгоритма.
- D) Публикация научной статьи с описанием эффективности предложенного алгоритма.

Тема 5. Эволюция алгоритмов. Эпоха машинного обучения

Задание 5.1. Какая из следующих задач, является примером задачи классификации в машинном обучении с учителем?

- А) Предсказать, через сколько моточасов произойдет отказ двигателя.
- В) Разделить всех пассажиров метро на группы по их типичным маршрутам.
- С) Определить, является ли транзакция мошеннической или легитимной.
- D) Собрать исторические данные о всех поломках локомотивов за 10 лет.

Задание 5.2. Почему традиционный подход, основанный на правилах (дедукция), оказывается бессильным в некоторых ситуациях?

А) Потому что у техников не было достаточно точных приборов для измерения вибрации и температуры.

- В) Потому что этот подход может проверять только соблюдение заранее написанных инструкций и не способен выявить невидимую неисправность, которая не нарушает ни одного из правил.
- С) Потому что дедуктивный подход пытается найти общую закономерность в тысячах прошлых случаев, что невозможно сделать вручную.
- D) Потому что для анализа такого объема данных в реальном времени не хватало вычислительной мощности.

Задание 5.3. Какую ключевую идею машинного обучения иллюстрируют пример «Северстали»?

- А) Что для машинного обучения самым важным является сбор как можно большего объема «сырых» данных с датчиков.
- В) Что современные модели «черного ящика» могут работать полностью автономно, без участия человека-эксперта.
- С) Что «сырые» данные с датчиков (температура, давление, вибрация) сами по себе бесполезны, и для решения задачи их необходимо преобразовать в осмысленные признаки.
- D) Что задачи регрессии (предсказание часов до отказа) более важны для промышленности, чем задачи классификации (поиск дефекта).

Тема 6. Эволюция алгоритмов. Эпоха нейронных сетей

Задание 6.1. Какой простейший элемент, имитирующий работу нейрона мозга и являющийся основой нейронных сетей, является «простейший атом восприятия»?

- А) Алгоритм глубокого обучения.
- В) Многослойная нейронная сеть.
- С) Взвешенный сигнал («вес»).
- D) Цифровой нейрон (Перцептрон).

Задание 6.2. Как нейронная сеть распознает сложные объекты на изображениях, например, автомобиль?

- А) Она делает это иерархически: первые слои распознают простые элементы (линии, углы), а последующие слои объединяют их во все более сложные объекты (фары, колеса, кузов).
- В) Путем измерения заранее заданных экспертом признаков, таких как «средний цвет» или «наличие четырех колес».
- С) Она сравнивает входное изображение целиком с миллионами эталонных изображений из базы данных ImageNet, находя наиболее похожее.
- D) С помощью одного очень сложного нейрона, который суммирует значения всех пикселей и сравнивает их с пороговым значением.

Тема 7. Эволюция алгоритмов. Эпоха генеративного ИИ

Задание 7.1. Какая технология решает проблему ограниченного контекстного окна («забывчивости») у больших языковых моделей?

- А) Промпт-инжиниринг.
- В) Механизм внимания.
- C) Retrieval-Augmented Generation (RAG).
- D) Архитектура «Трансформер».

Задание 7.2. В чем заключается ключевое отличие генеративного ИИ (LLM) от традиционного ИИ (например, нейросети для классификации изображений)?

- А) Традиционный ИИ анализирует данные и выдает прогноз или класс (например, «на фото кошка»), тогда как генеративный ИИ способен создавать совершенно новый контент (например, рассказ про кошку).
- В) Традиционный ИИ работает только с цифрами и таблицами, а генеративный ИИ с текстами и изображениями.
- С) Традиционный ИИ является «черным ящиком», в то время как работа генеративного ИИ полностью прозрачна и понятна.
- D) Генеративный ИИ использует механизм внимания, а традиционный ИИ только цифровые нейроны (перцептрон).